Unified Representation and Interaction for Joint Relational Triple Extraction

Wei Tang ^{1,2}, Benfeng Xu ^{1,2}, Yuyue Zhao ^{1,2}, Zhendong Mao ^{1,2}, Yifeng Liu ³ Yong Liao ^{1,2} *, Haiyong Xie ^{1,2}

University of Science and Technology of China, Anhui, China
 CCCD Key Lab of Ministry of Culture and Tourism, Anhui, China

³ National Engineering Laboratory for Risk Perception and Prevention (RPP), Beijing, China {weitang, benfeng, yyzha0}@mail.ustc.edu.cn, zdmao@ustc.edu.cn, liuyifeng3@cetc.com.cn

{yliao, hxie}@ustc.edu.cn

2022. 12. 03 • ChongQing

2022_EMNLP

https://github.com/wtangdev/UniRel

NATURAL LANGUAGE PROCESSING

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

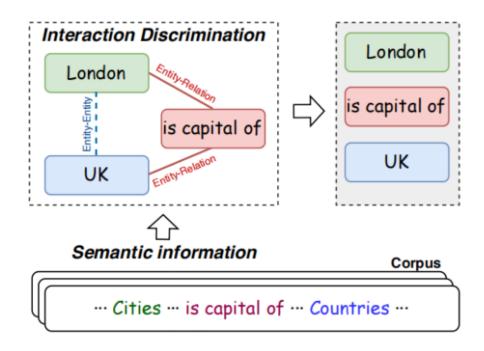


Figure 1: We leverage semantic information to unify the representation of entities and relations. Relational triples are extracted by modeling the entity-entity interaction (blue dashed line) and entity-relation interaction (red solid line) in a unified way.

- heterogeneous representations of entities and relations.
- heterogeneous modeling of entity-entity interactions and entity-relation interactions.

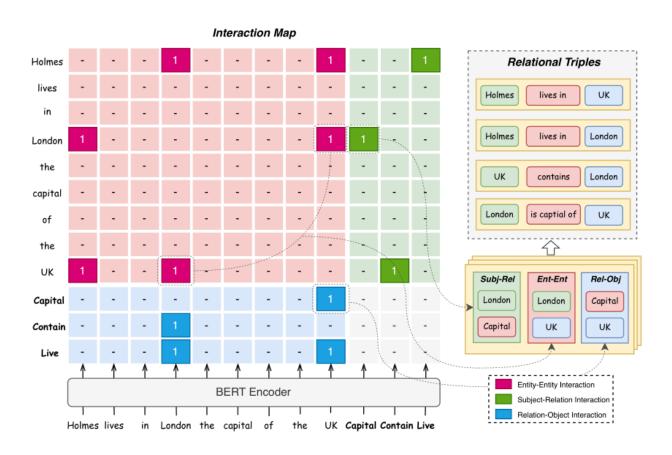
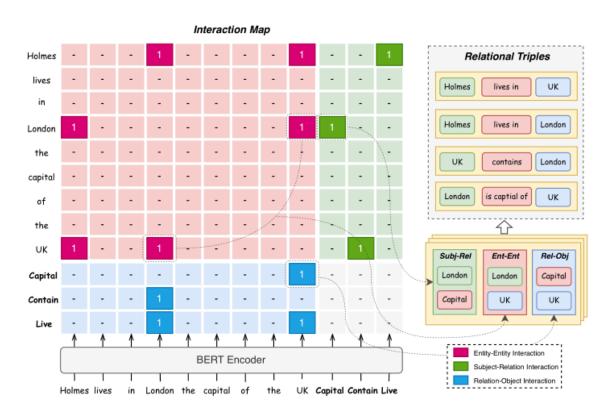
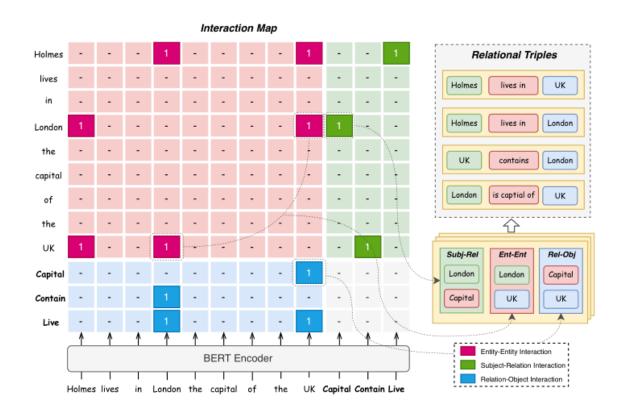



Figure 2: We input the concatenation of the input sentence and the natural language texts of relations (in bold). The Interaction Map is learned from the attention map inside the 12th layer of BERT Encoder, which consists of Entity-Entity Interaction (red rectangle) and Entity-Relation Interaction (green rectangle for subject and blue rectangle for object). Relational triples are extracted intuitively from the map.

$$X = \{x_1, x_2, \dots, x_N\}$$
 $T = [(s_l, r_l, o_l)]_{l=1}^L$
 $R = \{R_1, R_2, \dots, R_M\}$

$$T = \operatorname{Concat}(T_s, T_p) \tag{1}$$

$$H = E[T]$$
 (2) $H \in \mathbb{R}^{(N+M) \times d_h}$


$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_h}})V. \quad (3)$$

Entity-Entity Interaction

$$I_e(e_a, e_b) = \begin{cases} True & (e_a, r, e_b) \in T \text{ or} \\ & (e_b, r, e_a) \in T, \exists r \in R, \\ False & \text{otherwise} \end{cases}$$
(4)

 $I_e(e_b,e_a)=I_e(e_a,e_b)$, as entity-entity interaction is symmetrical.

Entity-Relation Interaction

$$I_r(e,r) = \begin{cases} True & (e,r,o) \in T, \exists o \in E \\ False & \text{otherwise} \end{cases}, (5)$$

$$I_r(r,e) = \begin{cases} True & (s,r,e) \in T, \exists s \in E \\ False & \text{otherwise} \end{cases}, (6)$$

$$\mathbf{I} = \operatorname{sigmoid}(\frac{1}{T} \sum_{t}^{T} \frac{Q_{t} K_{t}^{T}}{\sqrt{d_{h}}}), \tag{7}$$

$$\mathcal{L} = -\frac{1}{(N+M)^2} \sum_{i}^{N+M} \sum_{j}^{N+M} (\mathbf{I}^*_{i,j} \log \mathbf{I}_{i,j} + (1 - \mathbf{I}^*_{i,j}) \log(1 - \mathbf{I}_{i,j})),$$
(8)

Model	NYT			V	WebNLG		
Model	Prec.	Rec.	F1	Prec.	Rec.	F1	
NovelTagging (Zheng et al., 2017)	62.4	31.7	42.0	52.5	19.3	28.3	
CopyRE (Zeng et al., 2018)	61.0	56.6	58.7	37.7	36.4	37.1	
GraphRel (Fu et al., 2019)	63.9	60.0	61.9	44.7	41.1	42.9	
OrderCopyRE (Zeng et al., 2019)	77.9	67.2	72.1	63.3	59.9	61.6	
$CasRel_{BERT}$ (Wei et al., 2020)	89.7	89.5	89.6	93.4	90.1	91.8	
TPlinker _{BERT} (Wang et al., 2020)	91.3	92.5	91.9	91.7	92.0	91.9	
PRGC _{BERT} (Zheng et al., 2021a)	93.3	91.9	92.6	94.0	92.1	93.0	
R-BPtrNet _{BERT} (Chen et al., 2021)	92.7	92.5	92.6	93.7	92.8	93.3	
PFN (Yan et al., 2021)	-	-	92.4	-	-	93.6	
TDEER _{BERT} (Li et al., 2021)	93.0	92.1	92.5	93.8	92.4	93.1	
$GRTE_{BERT}$ (Ren et al., 2021)	92.9	93.1	93.0	93.7	94.2	93.9	
EmRel (Xu et al., 2022)	91.7	92.5	92.1	92.7	93.0	92.9	
One Rel_{BERT} (Shang et al., 2022)	92.8	92.9	92.8	94.1	94.4	94.3	
UniRel	93.5	94.0	93.7	94.8	94.6	94.7	
UniRel _{unused}	93.1	93.2	93.1	75.1	68.6	71.7	
UniRel _{separate}	92.6	93.7	93.1	93.5	94.4	93.9	

Table 1: Main results. The highest scores are in bold.

Dataset	Train	Test	Overl	ern		
2		1001	Normal	SEO	EPO	soo
NYT	56195	5000	3266	1297	978	45
WebNLG	5019	703	245	457	26	84

Table 2: Statistics of evaluation datasets. Overlapping patterns are counted on test set.

Experiment

Model	Normal	SEO	EPO	SOO	L= 1	L=2	L=3	L= 4	$L{\geq 5}$
CasRel	87.3	91.4	92.0	77.0	88.2	90.3	91.9	94.2	83.7
TPlinker	90.1	93.4	94.0	90.1	90.0	92.8	93.1	96.1	90.0
PRGC	91.0	94.0	94.5	81.8	91.1	93.0	93.5	95.5	93.0
R-BPtrNet	90.4	94.4	95.2	-	89.5	93.1	93.5	96.7	91.3
PFN	90.2	95.3	94.1	-	90.5	92.9	93.7	96.3	92.6
TDEER	90.8	94.1	94.5	-	90.8	92.8	94.1	95.9	92.8
GRTE	91.1	94.4	95.0	-	90.8	93.7	94.4	96.2	93.4
OneRel	90.6	95.1	94.8	90.8	90.5	93.4	93.9	96.5	94.2
UniRel	91.6 _{±0.3}	95.3 _{±0.2}	95.2 _{±0.1}	$89.8_{\pm 3.6}$	91.5 _{±0.3}	94.3 _{±0.2}	94.5 _{±0.3}	$96.6_{\pm 0.2}$	94.2 _{±0.8}

Table 3: F1-score on sentences with different overlapping patterns and different triple numbers. L is the number of triples in one sentence. All the compared models are implemented with BERT. We report the average results of UniRel of the five runs with different random seeds. The highest scores are in bold.

Experiment

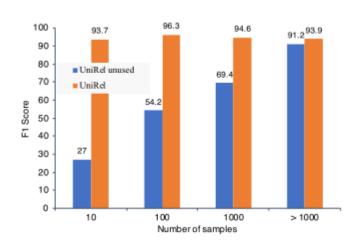


Figure 3: F1-score on relations with different orders of magnitude samples in training set for UniRel (in Orange) and UniRel_{unused} (in Blue). 10/100/1000 means relations with less than or equal to 10/100/1000 samples.

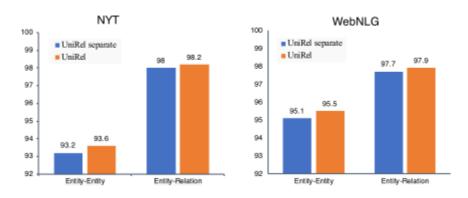
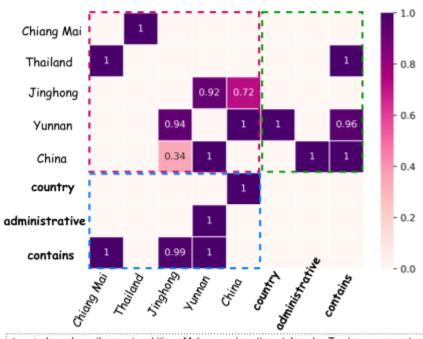



Figure 4: F1-score on Entity-Entity Interaction and Entity-Relation Interaction for UniRel (in Orange) and UniRel_{separate} (in Blue).

Experiment

Model	Trair	ning Time	Inference Time		
Model	NYT	WebNLG	NYT	WebNLG	
CasRel	1142	105	35	37	
TPLinker	2951	810	48	57	
PRGC	3632	498	13	13	
OneRel	2998	186	20	21	
UniRel	967	119	12	14	

Table 4: Computational Efficiency. Training time represents the time (second) needed to train one epoch. Inference time represents the average time (millisecond) to predict one sample.

Input: In perhaps the most ambitious Mekong cruise attempt, Impulse Tourism, an operator based in Chiang Mai, Thailand, is organizing an expedition starting in November in Jinghong, a small city in the Yunnan province in China.

Figure 5: Visualization of Interaction Map with input sentence sampled from NYT. Relations are in bold.

Thank you!

